Normalization & Regularization

Code for the Experiments

google-colab link: 06_NormalizationRegularization_Modularized_FINAL

github link: 06_NormalizationRegularization_Modularized_FINAL.ipynb

Dataset: MNIST Digits
Model: CNN - 9960 params
Epochs: 40

Regularization Values

l1_lambda = 5e-4
l2_lambda = 5e-3


L1 Regularization

l1_reg.png

L2 Regularization

l2_reg.png

Results

1. No L1 No L2

Highest Accuracy: 99.47

Metrics

nol1_nol2_metrics.png

Misclassifications

nol1_nol2_misclassifications.png

2. L1

Highest Accuracy: 99.44

Metrics

l1_metrics.png

Misclassifications

l1_misclassifications.png

3. L2

Highest Accuracy: 99.52

Metrics

l2_metrics.png

Misclassifications

l2_misclassifications.png

4. L1 & L2

Highest Accuracy: 98.76

Metrics

l1_l2_metrics.png

Misclassifications

l1_l2_misclassifications.png

Comparison

Validation Accuracy

val_acc_compare2.png

val_acc_compare.png

Validation Loss

val_loss_compare2.png

val_loss_compare.png